An active Science Literacy Week

This year, Science Literacy Week will keep you moving. Beginning September 16, there are tours lined up, a game-based session around data management, a hands-on Excel workshop, interactive sound demonstrations, and exhibits to explore.

Here is the daily rundown of downtown activities organized by the Library:

Monday, (Sept 16): Montreal’s Urban Heat Island: Tour of temperature sensors on campus

Tuesday, (Sept 17): Tour of the Maude Abbott Medical Museum

Wednesday, (Sept 18): Sounds in the City + Treasures from the History of Science in Rare Books and Special Collections

Thursday, (Sept 19): Tour of the Steinberg Centre for Simulation and Interactive Learning + Discover the cure! An introduction to the fundamentals of data management

Friday, (Sept 20): Chart Making in Excel: Going Further by Telling a Story with your Data

Register for an event today!

We also have exhibits going on so don’t miss out on those. You will get the opportunity to test out your map literacy in the Redpath Library Building, and check out a science book in person or online.

Student recommendation for the NHL

Congratulations goes out to Mark Kumhyr, winner of the Winter/Summer 2018 Communication in Engineering (CCOM 206) Excellence in Written Communication Award!

Alternate Refrigeration Systems for Improving Ice Quality in NHL Arenas

The National Hockey League is a multibillion-dollar industry, and yet suffers from a recent uptick in complaints over sub-par ice quality, largely due to a warming climate and higher average ice rink temperatures. The objective of this paper is to demonstrate the superiority of an indirect ammonia/CO2 refrigeration system over a direct CO2 system, all in relation to the current indirect ammonia/brinewater system. The comparison will be made based on three criteria: efficiency, represented by the coefficient of performance value; cost, taking into account short- and long-term investments; and environmental effect, presented as a Global Warming Potential value. The results show that the indirect ammonia/CO2 system is 56% more efficient than the current system, and 20% more than the direct CO2 system, and is less costly in the long-term. The environmental effects of each refrigerant systems were shown to be negligible. It is recommended that the NHL implement an indirect ammonia/CO2 system in order to negate the warming arena temperatures, and ensure that the NHL remains a powerhouse in the sports industry.

Read the full paper in eScholarship, McGill’s open access repository.