Cryptocurrency: Defying the Norms of Financial Institutions

Gold coin with bitcoin logo

Thanks very much to Antoine Bissonnette & Faiza Ambreen Chowdhury for submitting their FACC 400 assignment to post on The Turret. This guest post looks at the use of cryptocurrency for philanthropy and economic management.

Cryptocurrency: Defying the Norms of Financial Institutions

by Antoine Bissonnette & Faiza Ambreen Chowdhury

In the landscape of global finance, a significant transformation is underway, particularly certain markets where the relevancy of traditional banking institutions is being challenged. Cryptocurrency, once regarded as a niche or speculative asset, is steadily becoming a cornerstone in many industries where traditional banking systems have either failed or cannot adequately meet the needs of the industry. This blog post delves into the pivotal role of cryptocurrency in such industries and emerging markets.

The Rise of Crypto Philanthropy

A growing number of charitable organizations are starting to embrace cryptocurrency donations. While there are organizations dedicated to accepting only crypto-donations like The Giving Block, nowadays even major charity funds such as UNICEF, Greenpeace and the Human Rights Foundation, all offer it as an option to potential donors [4].

There are multiple advantages this offers to both donors and recipients. Firstly, the use of cryptocurrency ensures transparency between donors and organizations, facilitated by the public logging of transactions inherent to cryptocurrency. So donors, recipients and the public can track where the money is going and witness the real-time impact of donations [1]. Digital currency also offers significant tax advantages for donors, the amount donated would not be subject to capital gains taxes, therefore deducted from the donor’s overall gross income [2].

For organizations, providing the choice for crypto donations helps broaden their funding sources. With the rise in popularity of bitcoin, there are more and more people who want to donate, but only have access to cryptocurrency. Another feature that can work in organizations’ favor is the price volatility of the digital currency market. Some organizations have been known to hold donations for some amount of time, to increase the value of donations with time [3].

While cryptocurrency philanthropy showcases the transformative potential of digital assets, its influence extends far beyond charitable donations. In emerging markets, cryptocurrencies are reshaping entire economies, offering financial inclusion and economic empowerment to those who have been left behind by traditional banking systems.

Countries like Venezuela and Argentina, facing hyperinflation and economic instability, have turned to cryptocurrencies not just as an investment but as a means to preserve wealth, transact, and participate in the global economy. In fact, cryptocurrency has become a beacon of hope in emerging markets, offering financial inclusion and economic empowerment to those who have been left behind by traditional banking systems.

Case Study: Cryptocurrency Adoption in Venezuela

In Venezuela, cryptocurrencies serve as a crucial tool against hyperinflation and government control. The country ranks high in global crypto adoption, driven by the necessity to preserve savings in a stable asset and the ease of conducting transactions even during power and internet outages [5] [6]. Moreover, Venezuela’s engagement with cryptocurrencies extends beyond just transactions; it has a significant presence in the crypto mining world, thanks to the country’s low electricity costs. This has led to the creation of a legal framework to support and regulate the mining industry, further solidifying the role of digital currencies in its economy [7].

Influence on Economic Stability in Argentina

Argentina presents another compelling case of crypto’s impact, where the devaluation of the local currency has pushed individuals and businesses towards cryptocurrencies. Stablecoins, in particular, have become popular for preserving the value of earnings and savings, acting as a digital stand-in for the much-sought-after US dollar. The adaptability of cryptocurrencies has allowed for innovative solutions like crypto debit cards, enabling Argentinians to make everyday purchases directly from their crypto wallets, thus circumventing the volatile local currency [8].

These case studies shed light on a broader trend within the financial system, where cryptocurrencies are not just speculative assets but vital financial tools. They offer a way to mitigate the impacts of economic volatility, and enable businesses to operate smoothly despite fluctuating local currencies. As new markets continue to evolve, the role of cryptocurrencies is likely to expand, potentially transforming the global financial landscape and making financial inclusion a tangible reality for millions.

In summary, cryptocurrency is revolutionizing global finance by challenging traditional banking norms. From transforming philanthropy to providing economic stability in emerging markets, its impact is undeniable. Cryptocurrency’s journey is just beginning, promising a dynamic future for finance worldwide.

References:

[1] “Is Cryptophilanthropy The Future Of Giving? | Altoo AG,” Jan. 12, 2024. https://altoo.io/crypto-philanthropy-and-the-future-of-future-of-giving/ (accessed Mar. 28, 2024).

[2] “Tax Deductions for Crypto Donations,” TokenTax. https://tokentax.co/blog/tax-deductions-for-crypto-donations (accessed Mar. 28, 2024).

[3] R. Stevens, “Crypto for Good: How to Donate Crypto and Who Accepts It,” www.coindesk.com, Oct. 12, 2022. https://www.coindesk.com/learn/crypto-for-good-how-to-donate-crypto-and-who-accepts-it/ (accessed Mar. 28, 2024).

[4] T. G. Block, “List of Nonprofits Accepting Bitcoin & Crypto Donations,” The Giving Block. https://thegivingblock.com/resources/nonprofits-accepting-crypto-donations/

[5] Al Jazeera. (2021, June 22). With Venezuela’s economy in crisis, cryptocurrency fills the gaps. https://www.aljazeera.com/news/2021/6/22/with-venezuelas-economy-in-crisis-cryptocurrency-fills-the-gaps

[6] Goschenko, S. (2021, May 28). A look at why Venezuela is the third country with the most crypto adoption – emerging markets bitcoin news. Bitcoin News. https://news.bitcoin.com/venezuela-numbers-cryptocurrency-adoption-factors/

[7] Abad, J. (2022, February 12). P2P payments spurred crypto adoption across Venezuela in 2021. Cointelegraph. https://cointelegraph.com/news/p2p-payments-spurred-crypto-adoption-across-venezuela-in-2021

[8] The Chainalysis Team. (2023, October 23). Latin America cryptocurrency adoption: Data and analysis. Chainalysis. https://www.chainalysis.com/blog/latin-america-cryptocurrency-adoption/

Celebrating Excellence in Communication Award winners!

Please join me in congratulating the WCOM 206 Excellence in Communication Award winner for Winter/Summer 2022, Gabriel Lacroix, and Fall 2022, Sophie Allard. Their papers were chosen as the best among their peers across all sections of the Communication in Engineering course. Well done!

The full text of their papers have been added to the McGill Library repository, eScholarship.

Costs and Effectiveness of Roof Based Urban Heat Island Mitigation Strategies

by Gabriel Lacroix

The temperature of cities during summer keeps increasing due to climate change and the urban heat island phenomenon. These temperatures lead to increased mortality rates, discomfort, energy consumption, greenhouse gas emissions and contribute to deteriorating air quality. To alleviate the effects of this phenomenon, many effective mitigation strategies have been developed. In the highly urbanized areas where the urban heat island is the most problematic, roof area is abundant, making mitigation strategies like green roofs and cool roofs attractive. This paper compares the effectiveness of green and cool roofs at mitigating the urban heat island effect by evaluating the temperature reductions they provide, the lifecycle costs associated with them, and the added benefits from implementing them. This comparison found that green and cool roofs provide similar temperature reductions with cool roofs being more cost-effective and green roofs providing valuable added benefits.

Comparative Analysis of Carbon Capture Systems for Fossil Fuel-Fired Power Plants

by Sophie Allard

Power generation through the combustion of fossil fuels produces most of the world’s electricity; however, this results in considerable carbon dioxide emissions and harmful environmental effects. As global energy demands continue to rise, researchers have begun investigating strategies to mitigate emissions by fossil fuel-fired power plants and carbon capture and storage has emerged as a feasible and effective method of doing so. This paper provides a comparative analysis of three methods of carbon capture: post-combustion, pre-combustion and oxy-combustion capture. Post-combustion capture refers to the process of separating carbon dioxide from the flue gas produced by combustion through absorption in a solvent. Pre-combustion capture involves removing the CO2 from the fuel prior to combustion through a series of isolated reactions, leaving pure hydrogen to be burned for power generation. Oxy-combustion capture involves the combustion of fossil fuels in an environment of pure oxygen, such that the flue gas produced can easily be condensed to isolate the CO2. While these three systems are effective emission reduction strategies, pre-combustion capture is associated with the highest efficiency. However, given the high cost of implementing and running pre-combustion and oxy-combustion capture systems in coal or natural gas-fired power plants, post-combustion capture was determined to be the best solution, based on practicability, efficiency and economic feasibility. Through the employment of carbon capture, the emissions from fossil fuel-fired power plants could be significantly reduced in order to mitigate the alarming effects of climate change.

April Book Display: English & Academic Writing

Redpath Book Display

April may be a busy time while you are completing your term papers and exams. It may also be a great time to reflect and determine what you want to accomplish in the upcoming summer vacation. How about uplifting your academic writing skills? No matter what level of study you are doing or what role you are playing in academia, good writing undoubtedly makes a positive contribution to your work. Not only does it help to make your ideas more precise and persuasive, but also it aids in your reasoning, analyzing, and critical thinking.

With that in mind, the McGill Library created a virtual book display entitled “English & Academic Writing”, consisting of recent print books, ebooks, e-videos and website resources on academic writing and English communication. They are useful for both instructors and students of various disciplines, including those whose mother tongue is not English. Selected print titles are now available for borrowing on the Redpath Book Display on the main floor of the Redpath Library (aka. the northern part of the Humanities and Social Sciences Library) during the entire month of April.

Here are some of the titles that you may want to start with:

100 tips to avoid mistakes in academic writing and presenting

100 tips to avoid mistakes in academic writing and presenting, Adrian Wallwork & Anna Southern, 2020, Springer

This ebook contains one hundred typical mistakes relating to papers, proposals, oral presentations, and correspondence with editors, reviewers, and editing agencies. While it is primarily intended for non-native English speaking researchers, it is also useful for those who are revising their works in order to have them published.

How to fix your academic writing trouble: a practical guide, Inger Mewburn, Katherine Firth, and Shaun Lehmann, 2019, Open University Press

This print book explains common feedback students receive from their instructors of a writing course, such as “Your writing doesn’t sound very academic” and “Your writing doesn’t flow”. It also provides advice on how to fix those issues.

Writing for engineering and science students: staking your claim, Gerald Rau, 2020, Routledge

This ebook is a practical guide for both international students and native speakers of English undertaking either academic or technical writing. It uses writing excerpts from engineering and science journals to explore characteristics of a research paper, including organization, length and naming of sections, and location and purpose of citations and graphics. It covers different types of writing, including lab reports, research proposals, dissertations, poster presentations, industry reports, emails, and job applications.

Academic writing for university students, Stephen Bailey, 2022, Routledge, Taylor & Francis Group

This print book is designed to help with writing essays, reports and other papers for coursework and exams. It consists of four parts: The Writing Process: From finding suitable sources, through to editing and proofreading; Writing Types: Practice with common assignments such as reports and cause-effect essays; Writing Tools: Skills such as making comparisons, definitions, punctuation and style; and Lexis: Academic vocabulary, using synonyms, nouns, adjectives, verbs and adverbs.

“They say / I say”: the moves that matter in academic writing: with readings, Gerald Graff, Cathy Birkenstein, Russel K Durst, and Laura J Panning Davies, 2021, W.W. Norton & Company

This text has been used in many writing courses to teach students how to structure a scholarly conversation while building their own arguments. It provides practical rhetoric templates that are useful for citing different views in the literature, for example, “In discussions of………………, a controversial issue is whether……………… . While some argue that………………, others contend that………………. .” It is definitely a helpful guide for writing your literature review.

Becoming an academic writer: 50 exercises for paced, productive, and powerful writing, Patricia Goodson, 2017, SAGE

This print title is a workbook of 50 exercises, covering both linguistic basics (e.g. grammar and vocabulary) and writing specifics in different sections of an academic work, such as abstract, introduction, methods, results, discussion and conclusion.

For those whose mother tongue is not English, also feel free to watch some e-videos listed in the “Study English” and “English Composition” series.

Since it takes effort and time to improve your writing, why don’t you start the journey with a book from our book display today?

McGill Library supports engrXiv!

I am pleased to announce that McGill Library recently became a member of engrXiv, an open access e-print repository in engineering where faculty can submit their publications. This repository is not-for-profit and relies on university libraries and other organizations to cover their expenses. Please click here for a list of other institutions supporting this important work. You can search engrXiv for freely accessible research in many fields of engineering. Wondering how to pronounce the name? Me too! Founders say to call it “engineering archive”. You’ll find out more details about its name here.

Like McGill’s own institutional repository, eScholarship, engrXiv is a recognized repository that provides faculty with a venue for publishing their author-accepted manuscripts so that they can comply with the Tri-Agency Open Access Policy on Publications requiring all grant-funded journal articles be made open access within 12 months of publication. If you are a faculty member or other researcher wishing to deposit to engrXiv, please go to: https://engrxiv.org/submit and follow the instructions. For more information about how engrXiv works, please click here.

engrXiv isn’t the only open access initiative that McGill Library supports. To learn about the others, please click here. Want to learn more about open access in general? Read all about it on the library’s pages or ask your librarian!

Student recommendation for the NHL

Congratulations goes out to Mark Kumhyr, winner of the Winter/Summer 2018 Communication in Engineering (CCOM 206) Excellence in Written Communication Award!

Alternate Refrigeration Systems for Improving Ice Quality in NHL Arenas

The National Hockey League is a multibillion-dollar industry, and yet suffers from a recent uptick in complaints over sub-par ice quality, largely due to a warming climate and higher average ice rink temperatures. The objective of this paper is to demonstrate the superiority of an indirect ammonia/CO2 refrigeration system over a direct CO2 system, all in relation to the current indirect ammonia/brinewater system. The comparison will be made based on three criteria: efficiency, represented by the coefficient of performance value; cost, taking into account short- and long-term investments; and environmental effect, presented as a Global Warming Potential value. The results show that the indirect ammonia/CO2 system is 56% more efficient than the current system, and 20% more than the direct CO2 system, and is less costly in the long-term. The environmental effects of each refrigerant systems were shown to be negligible. It is recommended that the NHL implement an indirect ammonia/CO2 system in order to negate the warming arena temperatures, and ensure that the NHL remains a powerhouse in the sports industry.

Read the full paper in eScholarship, McGill’s open access repository.

Comparative Analysis of Interference-Free Alternatives to Wi-Fi

Sidelobes en

Once again I have the pleasure of announcing the next Communication in Engineering (CCOM 206) Excellence in Written Communication Award. Alexandre Tessier is the Fall 2017 winner for ‘Comparative Analysis of Interference-Free Alternatives to Wi-Fi’ (yay!).

Abstract:

Current Wi-Fi technologies occupy oversaturated 2.4 GHz and 5GHz frequency bands. In areas with high router density, this results in poor Wi-Fi performances, and, especially, slow data transfer rates at a time when demand for high-speed networks is rising. To minimize these effects, new technologies taking advantage of the availability of higher frequencies have been developed.In particular, Li-Fi and WiGig aim to transfer data wirelessly at rates faster than Wi-Fi and, more importantly, without interference. This paper assesses the viability of these two technologies as interference-free alternatives to Wi-Fi based on 3 standard networking attributes: data transmission capabilities, security, and vulnerability to interference. The analysis concludes that Li-Fi can transfer data at higher rates than WiGig, can be used to implement location-based security levels, and, unlike WiGig, is impervious to interference from neighbouring cells. For the aforementioned reasons, Li-Fi is the most promising candidate for an alternative to Wi-Fi, vastly outperforming current implementations of WiGig.

Download the full paper from the University’s open access repository.

Congratulations, Alexandre!

Alternatives to Lithium-Ion Batteries for Electric Vehicles

The Communication in Engineering (CCOM 206) Excellence in Written Communication Award winner has been announced for the combined Winter/Summer 2017 terms (insert drum roll): Albert Kragl!

Alternatives to Lithium-Ion Batteries for Electric Vehicles

With man-made climate change becoming increasingly severe every year, the need for vehicles powered by alternative energy sources is now greater than ever. Although there are electric vehicles commercially available today, their limited driving range and high price makes them unappealing to many consumers. In order to move past these limitations, researchers have begun investigating different types of batteries with the goal of finding a battery that can reliably store more energy than a traditional lithium-ion battery. This paper analyzes the feasibility of two battery types—lithium-sulfur and lithium-air—as potential replacements for lithium-ion batteries in electric vehicles. Although both batteries demonstrate high theoretical energy densities, the lithium-air battery has a much higher practical energy density when compared to lithium-sulfur, as well as a lower environmental impact and a greater number of charge cycles. The lithium-air battery also demonstrates a higher energy density and lower environmental impact when compared to lithium-ion. These results make lithium-air technology the best candidate to replace lithium-ion batteries in the near future.

The full article PDF is available from McGill’s open access institutional repository, eScholarship.

Congratulations, Albert!

A little piece of Schulich Library goes to China!

One of the main reasons I love working at McGill is the opportunity to interact with amazing students and staff who are doing exciting projects that could potentially change the world. The 99 McGill and Concordia student, staff, and alumni members of Team Montreal are currently part of one such endeavor. They are building a net zero energy home, a prototype that could revolutionize how we live in the future since the technological design features of this house enable it to create as much energy as the house dwellers consume. They have all kinds of sponsors including their lead presenting sponsor, Hydro Quebec, who sees this project as an opportunity for them to become a main player in technologies related to intelligent and sustainable home design. Hydro Quebec’s vice-president of client services, Eric Filion, sees this project as a way for them to learn more about innovative technologies and actually test them out.

Not only is Team Montreal building a house that could change for the better the way we live, they are also out to win the Solar Decathlon China 2018 competition currently taking place in China, where, as the only team from Canada, they are competing against 21 other teams from around the world. Once the competition is over, most houses will remain on public display either in China or elsewhere. Team members say there are plans to build other houses in Montreal using the same design.

What is particularly cool about the Team Montreal design is the way it takes the traditional row housing style of architecture so predominant in Montreal and creates something new, incorporating Asian-style features such as an open-air courtyard, and innovative technologies that enhance the house’s sustainability. For a sneak peek of how the house will look upon completion, check out the 3-minute video here (part-way down the page on the right-hand side).

I had heard about the project a few months back and was thrilled to be contacted in April by one of the team members who was asking for help. They wanted to have books on architecture and engineering to add to the house’s built-in bookshelves. The books could show signs of use since they wanted to give the house a lived-in feel. I was so happy to be able to support this fantastic project. Right away, I contacted my engineering librarian counterpart at Concordia, Joshua Chalifour to see if he could help out. Joshua had a number of engineering books that were going to be discarding due to them being so well-used and they had purchased replacement copies already. He willingly lugged a bunch of them over by foot from Concordia for me to add to the pile. So along with the books Joshua brought over, we had a combination of items from Schulich Library that were donations we already had in our collection, items that we were going to discard because we had duplicate copies or newer editions, and some old engineering trade magazines from my personal collection.

It was very exciting to correspond and meet with team members Kim Chayer and Thierry Syriani. Their enthusiasm for this project is certainly contagious! When they came to see the books, they were really happy to take everything! The books went out in two shipments, with the pre-fabricated house materials in big crates, the 1st shipment being in April and the 2nd one in June.

How can you help? You can support the team by liking and following them on Facebook or by following their diary where, as I write, they are in the home stretch of needing to assemble the house within the next few days. They are battling hot weather, challenges associated with pre-fabrication construction, heavy rain, and typhoon threats in order to complete the house on time. You can also support them by making a donation.

Go Team Montreal! Who knows, some of the engineering books you may have used in courses taught at McGill and Concordia might be lining the shelves of this year’s prize-winning house of the Solar Decathlon China competition!

Welcoming new Librarians

The Schulich Library is excited to welcome not one, not two, but THREE new librarians to our ranks!

First, we have Nu Ree Lee. Nu Ree comes to us from Purdue University in Indiana where she was a research data management librarian. Nu Ree is the new librarian for Bioengineering, Biomedical engineering, Chemical engineering, Mining and Materials engineering, and Earth and Planetary Sciences (whew, so many). If she is your subject librarian, you can reach Nu Ree at nuree.lee@mcgill.ca

In addition to being an awesome librarian, Nu Ree has a King Charles Spaniel/Bichon mix dog named Chopin, is originally from Toronto, and recently took up kickboxing.

Next, we have Lucy Kiester. Lucy has moved here from Dalhousie University in Halifax where she worked in the Health Sciences library with Nursing and Dentistry. She is the new Undergraduate Medical Education Librarian (only 800 students!) and can be reached at lucy.kiester@mcgill.ca.

Lucy hails from a very small town in the Pacific Northwest, loves to salsa dance, and admits to watching a stunning number of videos on Youtube.

Last, but certainly not least, we have Andrea Quaiattini. Andrea comes to us from the University of Alberta where she worked all over their Health and Sciences libraries. She is the new liaison for Graduate Medicine, Medical Education, and many of the Medical Specialties. To reach Andrea email andrea.quaiattini@mcgill.ca.

Andrea is originally from Calgary, loves a good walk in the mountains, and proudly admits to knowing far too much (or exactly the right amount) about Monty Python.

All three of these librarians are very excited to be joining the team of librarians at Schulich and are looking forward to making connections with their students and faculty! Send an email to say hello, ask for a consult, or get other library support.

As ever, if you are unsure of who your subject librarian is, feel free to send an email with your question or topic of research to schulich.library@mcgill.ca, and we will be sure to direct your email to the correct librarian.

Another winning paper!

The Fall 2016 Excellence in Written Communication Award goes to Brittany Stott for “Controlling myoelectric-prosthetics through the use of nerves and muscles.”

The accomplishment comes with a monetary prize of $500 from the Faculty of Engineering.

The CCOM 206: Communication in Engineering Writing Recognition Committee found the paper to be very clearly written and well organized, and noted the exemplary use of figures and a table.

The abstract is pasted below but you can download the full paper from the record in eScholarship, McGill’s digital repository.

People who are fitted with prosthetics due to the loss of a limb may have difficulty performing simple daily tasks that may be taken for granted, such as tying shoe laces or opening a jar. The prosthetics used today are often rigid, inflexible, bulky molds that are standardized and have minimal degrees of freedom. The development of myoelectric-controlled prosthetics has greatly facilitated the performance of daily tasks by the user, although the best method for controlling these prosthetics is still to be determined. This paper compares and discusses three major advancements in prosthetic control electrode arrays, osseointegration, and targeted muscle reinnervation by examining stability, accuracy, and movability of the user controlling the prosthetic. It is determined that the most beneficial solution for the user would be the implementation of osseointegration and targeted muscle reinnervation combined. This combination would allow the creation of a prosthetic that would increase the accuracy and stability of the artificial limb, and that would provide a more permanent and long-term solution. In addition, the creation of a myoelectric-controlled prosthetic that incorporates these two methods would allow for further research and would increase the stability, accuracy, and movability of the user.

Stay tuned for the winner of the Winter and Summer 2017 Excellence in Written Communication Award…