Plant regrowth after 1,600 years

Spring is here and my parents have started planning their garden by growing tomato seeds indoors.  In about a month’s time, these seeds will have grown into small plants that will be transplanted to the earth outside when the weather is warmer.  There was an interesting article published in the March 17th issue of Current Biology that discusses how scientists were able to regrow a moss plant that had been frozen for 1,600 years.  They just let it thaw and watered it.  According to the authors, it is the first study to report the revival of a frozen plant or animal after such a long period of time.

The Biggest Transition

Starting undergraduate studies is definitely one of the biggest transitions in anyone’s life. This gets even more significant when you come from a different country. As an international student, I faced a lot of changes as well. The biggest being to stay alone – away from your family. Change is life’s biggest truth, regardless of whether one accepts it or not. But one can only take a certain amount of change at a time.

Change is life’s biggest truth, regardless of whether one accepts it or not.

I arrived at Montreal two days after the beginning of the semester. As with many other international students, I had some delays in getting my visa. Luckily I had my uncle over here with whom I stayed for the first week. I was overwhelmed by the sight, when he dropped me off at the Roddick Gates for the first time. I could see the McGill flag flying at the top of the arts building. I had a feeling that I came to the right place.

Things started to move on pretty fast afterwards. Honestly, you don’t have much time to fit in at McGill. The professors go into full gear, assignments keep on piling up and exams start to knock on your door sooner than you even realize. It’s good in a way that you don’t have time to sit and feel bad for being away from your family. Well, I never did. Friends, in this case are a crucial element. It’s always nice to have people who are in your shoes. We supported each other in our bad times, shared our happiness and learned to overcome obstacles together. This really makes the transition much smoother than one can imagine.

It has been one semester now. In fact, it’s almost the end of my second semester. When I think of the first days, it feels like as if it was just yesterday! I can see myself to be quite a changed person. I can live independently. Never thought of that before; can’t believe it even now. It’s the beginning of a new life. And yes, I accepted the change.

A New Addition to the Blogging Team

I am pleased to introduce Mushfique, the Turret’s newest blogger.  He joins some of his fellow students from this semester’s Communication in Engineering course in contributing to the blog about his experiences as a new student at McGill.  Mushfique is an electrical engineering student from Dhaka, Bangladesh who will be staying on in Montreal this summer to take part in McGill’s Summer Undergraduate Research in Engineering.  Welcome to the Turret Mushfique!  We look forward to hearing about your experiences as an international student in engineering. Mushfique_photo

Do students need old school instruction?

1395855101181While we are getting excited about the great opportunities that emerging technology brings to higher education and busy with creating distant learning modules, online tutorials, videos, and MOOCs, research from Concordia University’s Department of Education says that “Yes, students like technology, and yes, they want it in the classroom — but they still want classical instruction.” Read more at here.

Image from Why the digital classroom needs to go ‘old school’

STM starts testing 100% electric bus

Writing about one or more aspects of electric vehicles is a popular term paper topic.  Beginning this week, the STM is testing an all-electric bus on select routes in Montreal as a possible option to help decrease its greenhouse emissions.  I was pleasantly surprised to read in the Montreal Gazette telectric bushat the STM already owns hybrid buses (part diesel and electric).  An electric bus, depending on the model, costs 7-14% more than a hybrid bus, and 50-70% more than a diesel bus.  The STM aims to purchase only electric buses when it starts replacing its existing fleet in 2025.  I look forward to riding on one!

Image from STM

Saving Electricity at McGill – Saving the Planet?

In 1850, William Gladstone asked the scientist Michael Faraday why electricity was valuable. Faraday answered, “One day, sir, you may tax it.”

Indeed, electricity has become such a fundamental part of modern society. We use it for almost everything we do: from lighting up this classroom, to charging our phones, to sharing this powerpoint presentation with you.

But what many fail to see is that the generation of electricity has become so widespread that its environmental impact is simply not negligible anymore. Most electricity today is generated at power plants that convert some other kind of energy into electrical power. Each system has advantages and disadvantages, but ultimately, many of them pose environmental concerns.

Indeed, the majority of our electricity production is based on burning fossil fuels to produce steam, which is then used to drive a turbine that, in turn, drives an electrical generator.  In addition to being harmful to the environment, these are non-renewable and limited sources of energy on earth, so we must consume electricity in a conscientious and sustainable way in order to ensure our energy supply in the long term – for ourselves but also for future generations. Additionally, as Faraday predicted, electricity, and most importantly energy, is not free. The electricity bills add up, and the longer we leave our lights turned on for nothing, the more money we waste.

Hence, even a small amount of saved electricity can have a large positive impact on our environment, and at McGill in particular.

So what’s the solution? Taking it one step at a time. Starting small. The goal is to promote sustainability at McGill, and we can do so by installing automatic, motion sensor lighting in as many campus buildings as possible. The Schulich Library has already jumped onto the energy-saving bandwagon by installing such automatic lighting, but many buildings have yet to catch up, such as the Birks building.

McGill’s Birks building comprises four floors and is mostly used by the facilities staff and students of McGill University. It consists of classrooms, offices, hallways, staircases, a library and washrooms, as well as a chapel. The lights in the building are kept on for around 10 to 12 hours per day, 5 days a week.

Ultimately, these lights do not need to be turned on consistently for that entire period of time whilst a classroom is not in use, or whilst a staff member is not in his/her office. Similarly, lights in the staircases need not to be switched on when not in use. We have consulted with students and staff of the building and they informed us that the lights remain turned on in between classes, and are only rarely switched off if someone walks by and notices. Likewise, lights in the washrooms are kept on for a stretch of 10 to 12 hours per day even when they are not in use, ultimately resulting in an evident loss of energy.

Moreover, even smaller instances that we look over also have an impact on the consumption of energy. For instance, staff working in their offices may forget to turn off their lights before leaving for lunch. Furthermore, a massive amount is spent on lighting up the library and the staircases alone due to their sheer size.

Therefore, I believe that the installation of motion sensor lighting is the solution to all the problems mentioned above. After using the equation E = P*t, one can calculate that motion sensor automatic lighting can save an estimated 23,351 kWh of electrical energy per year – about 50% of its total energy consumption – as well as over $1,400 per year, assuming that electricity costs 6 cents per kWh.

Perhaps it is worth looking into… saving the planet is ultimately done one step at a time!

CEGSS conference

Dear all
This is a reminder for those interested in participating in the upcoming  21st annual CEGSS conference.
Whether it’s an oral presentation or a poster, please prepare an abstract and e-mail it back to
The deadline for abstract submission is March 28th, 2014. 
The conference will be held on MondayMay 12th9:30 am – 5pm at Thomson House.The conference is FREE for all McGill graduate students.

Try this: Altmetric it

Last year I posted on Altmetric for Scopus where you can find metrics, like tweets, blogs, and saves to citation managers, that are alternatives to the traditional citation counts. Altmetric now has a tool to allow you to see these metrics for articles that you are viewing in your browser. I installed this Altmetric bookmarklet to my bookmarks bar. Give it a try and let me know what you think.

Dropleton, A new Quasiparticle!

Just a few weeks ago, a new quasiparticle, known as the ‘dropleton’, was discovered. Scientists in the States and Germany discovered this new liquid-like particle when they were studying excitons and the effects that lasers have on semiconductor elements. Exciton, like dropleton, is another quasiparticle, and is a pair of an electron and a hole bound together by electrostatic forces. (As a sidenote, a quasiparticle is a collective excitation within a material that behaves like a fundamental particle.)

Researchers created this new quantum particle by firing high-speed lasers at gallium-arsenide quantum wells. These dropleton have a lifetime of 25 picoseconds (one-trillionth of a second), long enough to be scientifically studied properly. These quantum droplets are created when the firing lasers excite electrons to form a number of excitions which combine to form one whole quantum droplet system, the dropleton. These quasiparticles are stabilized by Pauli’s Exclusion Principle and have properties relate-able to those of liquids.

Liquid-like dropletons are supposed to reveal invaluable information on how electrons react to different stimuli in solids and eventually lead to a better understanding of the solid state, and better electronic devices.

For more detailed information, do check out the original article, which was published in Nature 506,471–475 (27 February 2014).


Growing up in a small town, I was sure I wanted to go somewhere huge. When I was accepted into McGill, I knew this was the place I wanted to be- it was big, located in a metropolitan city, and totally different from my small town.

When I told my friends – most of whom chose to attend small liberal arts colleges – many were shocked. “Forty-thousand people?!” people told me, and I would just shrug them off like “Yeah, it’s a big place!” I would think about the number, but never actually process it.

But then I actually came here. And I realized something: there is a huge difference between imagining the number 40,000 and living surrounded by it. I knew it was a large amount of people, but being in classes of 1400 students, dealing with lab sections that fill up in a day, and having professors who don’t even know the name of a single student in their class really put it into perspective.

This is a big place.

I wondered why it never occurred to me just how large a number 40,000 was. After some research, I realized the reason this came as such a shock to me is because our brain is just not evolved enough to process large numbers. This idea is called “scalar variability”. It basically says that the larger the number you are processing, the fuzzier the estimate or visual representation you will get.

Try it! Imagine five people standing in a room. Really, it isn’t that hard of a feat. But now imagine a thousand people in a room. Are you really able to picture the magnitude of these people with the same clarity? It becomes much more of a challenge.

Now, try 40,000.

I can honestly say that the first few months of my transition from a small town to a gigantic university, like any first year college student, were very difficult. I was not used to the mass quantities of people in classes, in my residence, in the libraries, or even in the streets. I felt very alone at times.

However, while I was scared of the large numbers at first, I now welcome them. They have encouraged me to build my own community and surround myself with friends who I found through the different clubs I joined. They allow me to meet new people every day. And I know, once the class sizes shrink in upper years, they will give me access to some of the top professors in math and science research in the world.

While I found the huge number of people who go to this university intimidating at first, I realized it has allowed me to become more independent, and to surround myself with people and friends who I can truly say I care about and found on my own. Having that support from a smaller community within this large institution makes it all the more worthwhile. While my brain may never truly know what 40,000 is, the ten or so close friends I surround myself by are much easier for my brain to manage, and I don’t know where I would be without their support. And that is what has helped me deal with the transition to this huge university.