The Ethics of Colonization on Mars

Image from Wikipedia

Welcome back to Aleiah who posted for the Turret while she was a student in Communication in Engineering (CCOM 206). Here is a post she wrote with her fellow student, Kevin Xie, for a class assignment for Engineering Professional Practice (FACC 400).


The Ethics of Colonization on Mars

Humanity is on the verge of technological advancement which will make possible the colonization of Mars, the red planet. According to SpaceX the first human is planned to land on Mars by the year 20241. However, this calls into question: Should humanity colonize Mars?

The colonization of Mars is a complex issue with many underlying aspects. There are also many technical challenges such as, overcoming cosmic radiation, bone demineralization and the psychological stress of a journey to Mars.  For Mars to be habitable by humans, it must first be terraformed. Terraforming is a process in which the environment of a planet is modified to emulate the earth. It involves the modification of the atmosphere, topography, temperature and ecology. Doing this will help scientists on Earth understand Earth’s own environment as well as facilitate human life on mars. Any technological advancements made will help all of humanity. An example of this is climate change on Earth. Understanding how to control the temperature of a planet can help solve climate change on Earth.

Whether or not the Mars colonization project is a success, humanity can benefit from this project as the technology required to successfully colonize Mars can be useful on Earth as well. For example, here are three industries that would be greatly advanced thanks to the Mars project, to the benefit of humans on Earth:

  1. Agriculture:

The World Bank reported in 20152 that approximately 11% of Earth is arable, meaning capable of being ploughed and used for crops. As human population grows and food security becomes a greater issue, the agricultural industry would benefit from technology that allowed them to farm on unforgiving land. The Mars project faces this exact design problem as humans would need to start growing their own food on Mars in order to successfully colonize there.

  1. Medical:

Astronauts face a number of health issues in space, such as loss of bone density and muscular atrophy due to the lower gravity. In particular, Mars only has 38% of Earth’s gravity. Under prolonged circumstances, astronauts could find themselves facing skeletal damage. Although the circumstances are unique to the astronauts, these health concerns are not. Osteoporosis is a common public health problem whose patients tend to neglect their medication as they don’t believe in the effectiveness of the treatment. Solving this problem for astronauts will also help these patients.

  1. Nuclear Power:

Mars offers very little radiation protection and shielding compared to Earth, due to having no magnetosphere and a very thin atmosphere. Whereas humans on Earth are naturally protected from solar radiation and galactic cosmic rays, as Earth explores more sources of energy including nuclear power, it will soon become increasingly important to create technology that would protect humans from radiation.

Additionally, it is important to think of the colonization of Mars not as a transfer, but an expansion. Creating a colony on Mars does not mean that the earth will be abandoned. It can be compared to the first European settlers arriving in America. America was simply an expansion. In order for humanity to continue to progress, Mars must be colonized.

The colonization of Mars is also a stepping stone for humans to move beyond the solar system. The knowledge gained from colonizing mars will not only pave the way to going to other planets, but also building permanently habitable space stations in which humans can live.

Citations

Arable land (% of land area). (n.d.). Retrieved November 09, 2018, from https://data.worldbank.org/indicator/AG.LND.ARBL.ZS?end=2015&start=2015&view=bar

This is how SpaceX will get humans to Mars by 2024 | CBC News. (2017, September 29). Retrieved November 09, 2018, from https://www.cbc.ca/news/technology/spacex-mars-rocket-elon-musk-1.4312878

Doctors’ Cell Phones Are Contaminating Hospitals by Annie Charron

Today we have another guest undergraduate student post, originally submitted as a class assignment for Communicating Science (CCOM 314).

With support from Diane Dechief, Faculty Lecturer at the McGill Writing Centre, we will be sharing more noteworthy student writing right here on The Turret.

Annie chose to write a Trilobite article that provides knowledge on the health consequences of the use of cell phones by doctors.


Doctors’ Cell Phones Are Contaminating Hospitals

Your mobile phone carries the dirty fragments of germs. Thousands of microscopic bacteria bugs are crawling on it. The residue of greasy food is smudged on the screen. The remnants touched on public door handles have engulfed the surface of the phone.

Mobile phones are your hands’ partner in crime: you can wash your hands to eradicate germs and prevent the spread of germs, but you can’t wash the cell phone – at least not with soap. Without proper cleaning, germs are like glitter, they will never go away. Healthcare workers who bring mobile phones to work interfere with infection controls in hospitals.

Healthcare workers cell phones are a magnet for bacteria and harmful chemicals, which could decrease patients’ recovery. Hospitals should be the most sterile places in the world. But our tiny gadgets may ruin this. At any rate, there should be major shame towards the television series Grey’s Anatomy, where the characters are constantly using their mobile devices during patient care without washing their hands.

In a study published by Excellent Publishers in 2017, Ganapathy Shakthivel and his colleagues, working in the department of microbiology at Tirunelveli Medical College in India, examined 50 randomly selected healthcare workers at a specialized care hospital. They investigated how the bacterial contamination of cell phones poses a threat to infections. They then assessed whether contamination could be cleaned simply with 70% rubbing alcohol.

The study lasted for two months and included mobile phones belonging to doctors, nurses, laboratory technicians, nursing assistants and hospital workers. Each worker first filled out a questionnaire that asked questions about the prevalence of phone usage between patient consultations and if workers washed their hands in between use or followed a strict sterile routine. Following this, each mobile phone was swabbed twice. The first swab took place before the decontamination procedure, the second swab occurred after the phone was thoroughly cleaned with the rubbing alcohol for 5 to 7 minutes.

The study revealed that of the 50 mobile phones in the study, 90% were found to be carrying multiple microorganism bacteria such as E. coli, which is very likely to cause infections. The decontamination results revealed that rubbing alcohol proves effective. The majority of the phones (78%) showed no bacterial growth after decontamination and 12% showed decreased bacterial growth. Another study led by Usha Arora (2009), showed a higher decontamination efficacy of approximately 98% with the 70% rubbing alcohol, compared to Ganapathy Shakthivel’s (2017) results of 86.6%.

Ganapathy Shakthivel (2017) states that the use of cell phones in India accounts for more than 88% of all users in Intensive Care Units and Operation theaters. And if a cell phone is not routinely cleaned in hospitals it becomes “a reservoir of infection.” Phones are a vehicle for the transmission of infection, to both patients and the community. The questionnaire revealed that only 12% of the healthcare workers made a habit of washing their hands before attending to a patient. That being said, “nearly 52% of the workers agreed that mobile phones may act a vector for spread of nosocomial (a disease originating in a hospital) infections.”

Preventative methods for eliminating the spread of infection via cell phones, include training other individuals (children, colleagues) not to touch phones other than their own. Some hospitals have banned or eliminated the use of cell phones during working hours. This may be hard to accomplish, considering you touch your phone on average 2,617 times a day. The most important strategy is simply to clean the device with rubbing alcohol before, during and after work – this regular routine will significantly reduce infections in hospitals.

References

Ganapathy Shakthivel, P.C., G. Velvzhi, G. Sucilathangam, Revathy, C. (2017). Mobile phones in healthcare setting: Potential threat in infection control. Int. J.Curr. Microbio  App. Sci. 6(3): 706-711. doi: https://doi.org/10.20546/ijcmas.2017.603.081

Usha, A., P. Devi, A, Chadga, S. Malhotra. (2009). Cell phones A modern slayhouse for bacteria pathogens. Jk Science. 11(3). Retrieved from http://www.jkscience.org/archive/vol113/6-Original%20Article%20-%20cell%20phones.pdf

Comparative Analysis of Interference-Free Alternatives to Wi-Fi

Sidelobes en

Once again I have the pleasure of announcing the next Communication in Engineering (CCOM 206) Excellence in Written Communication Award. Alexandre Tessier is the Fall 2017 winner for ‘Comparative Analysis of Interference-Free Alternatives to Wi-Fi’ (yay!).

Abstract:

Current Wi-Fi technologies occupy oversaturated 2.4 GHz and 5GHz frequency bands. In areas with high router density, this results in poor Wi-Fi performances, and, especially, slow data transfer rates at a time when demand for high-speed networks is rising. To minimize these effects, new technologies taking advantage of the availability of higher frequencies have been developed.In particular, Li-Fi and WiGig aim to transfer data wirelessly at rates faster than Wi-Fi and, more importantly, without interference. This paper assesses the viability of these two technologies as interference-free alternatives to Wi-Fi based on 3 standard networking attributes: data transmission capabilities, security, and vulnerability to interference. The analysis concludes that Li-Fi can transfer data at higher rates than WiGig, can be used to implement location-based security levels, and, unlike WiGig, is impervious to interference from neighbouring cells. For the aforementioned reasons, Li-Fi is the most promising candidate for an alternative to Wi-Fi, vastly outperforming current implementations of WiGig.

Download the full paper from the University’s open access repository.

Congratulations, Alexandre!

Alternatives to Lithium-Ion Batteries for Electric Vehicles

The Communication in Engineering (CCOM 206) Excellence in Written Communication Award winner has been announced for the combined Winter/Summer 2017 terms (insert drum roll): Albert Kragl!

Alternatives to Lithium-Ion Batteries for Electric Vehicles

With man-made climate change becoming increasingly severe every year, the need for vehicles powered by alternative energy sources is now greater than ever. Although there are electric vehicles commercially available today, their limited driving range and high price makes them unappealing to many consumers. In order to move past these limitations, researchers have begun investigating different types of batteries with the goal of finding a battery that can reliably store more energy than a traditional lithium-ion battery. This paper analyzes the feasibility of two battery types—lithium-sulfur and lithium-air—as potential replacements for lithium-ion batteries in electric vehicles. Although both batteries demonstrate high theoretical energy densities, the lithium-air battery has a much higher practical energy density when compared to lithium-sulfur, as well as a lower environmental impact and a greater number of charge cycles. The lithium-air battery also demonstrates a higher energy density and lower environmental impact when compared to lithium-ion. These results make lithium-air technology the best candidate to replace lithium-ion batteries in the near future.

The full article PDF is available from McGill’s open access institutional repository, eScholarship.

Congratulations, Albert!

A little piece of Schulich Library goes to China!

One of the main reasons I love working at McGill is the opportunity to interact with amazing students and staff who are doing exciting projects that could potentially change the world. The 99 McGill and Concordia student, staff, and alumni members of Team Montreal are currently part of one such endeavor. They are building a net zero energy home, a prototype that could revolutionize how we live in the future since the technological design features of this house enable it to create as much energy as the house dwellers consume. They have all kinds of sponsors including their lead presenting sponsor, Hydro Quebec, who sees this project as an opportunity for them to become a main player in technologies related to intelligent and sustainable home design. Hydro Quebec’s vice-president of client services, Eric Filion, sees this project as a way for them to learn more about innovative technologies and actually test them out.

Not only is Team Montreal building a house that could change for the better the way we live, they are also out to win the Solar Decathlon China 2018 competition currently taking place in China, where, as the only team from Canada, they are competing against 21 other teams from around the world. Once the competition is over, most houses will remain on public display either in China or elsewhere. Team members say there are plans to build other houses in Montreal using the same design.

What is particularly cool about the Team Montreal design is the way it takes the traditional row housing style of architecture so predominant in Montreal and creates something new, incorporating Asian-style features such as an open-air courtyard, and innovative technologies that enhance the house’s sustainability. For a sneak peek of how the house will look upon completion, check out the 3-minute video here (part-way down the page on the right-hand side).

I had heard about the project a few months back and was thrilled to be contacted in April by one of the team members who was asking for help. They wanted to have books on architecture and engineering to add to the house’s built-in bookshelves. The books could show signs of use since they wanted to give the house a lived-in feel. I was so happy to be able to support this fantastic project. Right away, I contacted my engineering librarian counterpart at Concordia, Joshua Chalifour to see if he could help out. Joshua had a number of engineering books that were going to be discarding due to them being so well-used and they had purchased replacement copies already. He willingly lugged a bunch of them over by foot from Concordia for me to add to the pile. So along with the books Joshua brought over, we had a combination of items from Schulich Library that were donations we already had in our collection, items that we were going to discard because we had duplicate copies or newer editions, and some old engineering trade magazines from my personal collection.

It was very exciting to correspond and meet with team members Kim Chayer and Thierry Syriani. Their enthusiasm for this project is certainly contagious! When they came to see the books, they were really happy to take everything! The books went out in two shipments, with the pre-fabricated house materials in big crates, the 1st shipment being in April and the 2nd one in June.

How can you help? You can support the team by liking and following them on Facebook or by following their diary where, as I write, they are in the home stretch of needing to assemble the house within the next few days. They are battling hot weather, challenges associated with pre-fabrication construction, heavy rain, and typhoon threats in order to complete the house on time. You can also support them by making a donation.

Go Team Montreal! Who knows, some of the engineering books you may have used in courses taught at McGill and Concordia might be lining the shelves of this year’s prize-winning house of the Solar Decathlon China competition!

Exploring McGill on a rainy day

I’m taking advantage of this rainy day to tune in to the Mini-Science 2018 episodes: Women in Science at McGill (and beyond). This seven-part series was recorded and made available on the McGill YouTube channel.

YouTube is the place to go If you have ever wondered if you could watch lectures and events that have taken place on campus. Videos include public forums, competitions, and conference presentations.

Apart from the main channel, there are additional options on YouTube for webcasts related to science at McGill: AstroMcGill, Separating Sense From Nonsense (McGill Office for Science and Society), Montreal Neuro, and McGill University Health Centre (MUHC).

If you have time, I highly recommend the first episode of this year’s Mini-Science – History of Women in Science (below). In it, Principal Suzanne Fortier tells an engaging story about her experience growing up in a small town in Quebec and her unique path to science. There were a total of three books in her home, but to find out which three you will have to watch.

Enjoy the rain!

Communicating Science: Profile of Sierra Clark by Audrey Carleton

Today we have a guest student post, originally submitted as a class assignment for Communicating Science (CCOM 314). With support from Diane Dechief, Faculty Lecturer at the McGill Writing Centre, we will be sharing more noteworthy student writing right here on The Turret.

Audrey Carleton chose to write a profile on Sierra Clark, a graduate student supervised by Dr. Jill Baumgartner in the Institute for Health and Social Policy.


Sierra Clark

Headline: Sierra Clark on indoor air pollution and academic uncertainty

Subhead: McGill Master’s student tests lifesaving interventions for Tibetan Plateau residents

By: Audrey Carleton

Date: December 1, 2017

Sierra Clark has been reading National Geographic for as long as she can remember. Even before she learned to read, she would eagerly flip through the magazine’s glossy pages to admire its photos. From this young age, she had her sights set on someday working for the publication as an archaeologist.

In the twenty years that followed, Clark had a few changes of heart. When she began her undergraduate degree at McGill University in 2011, she was enrolled with a major in Anthropology. But after sitting through a few convoluted lectures in an introductory anthropology course, she realized the program wasn’t the right fit for her. One meeting with an academic advisor later, she settled on a major in Geography, and swiftly fell in love with it. Upon graduating in 2015, she swiftly enrolled in a Master’s Program in Epidemiology at McGill, which she is completing now. All the while, Clark continued to read National Geographic religiously. Continue reading

Another winning paper!

The Fall 2016 Excellence in Written Communication Award goes to Brittany Stott for “Controlling myoelectric-prosthetics through the use of nerves and muscles.”

The accomplishment comes with a monetary prize of $500 from the Faculty of Engineering.

The CCOM 206: Communication in Engineering Writing Recognition Committee found the paper to be very clearly written and well organized, and noted the exemplary use of figures and a table.

The abstract is pasted below but you can download the full paper from the record in eScholarship, McGill’s digital repository.

People who are fitted with prosthetics due to the loss of a limb may have difficulty performing simple daily tasks that may be taken for granted, such as tying shoe laces or opening a jar. The prosthetics used today are often rigid, inflexible, bulky molds that are standardized and have minimal degrees of freedom. The development of myoelectric-controlled prosthetics has greatly facilitated the performance of daily tasks by the user, although the best method for controlling these prosthetics is still to be determined. This paper compares and discusses three major advancements in prosthetic control electrode arrays, osseointegration, and targeted muscle reinnervation by examining stability, accuracy, and movability of the user controlling the prosthetic. It is determined that the most beneficial solution for the user would be the implementation of osseointegration and targeted muscle reinnervation combined. This combination would allow the creation of a prosthetic that would increase the accuracy and stability of the artificial limb, and that would provide a more permanent and long-term solution. In addition, the creation of a myoelectric-controlled prosthetic that incorporates these two methods would allow for further research and would increase the stability, accuracy, and movability of the user.

Stay tuned for the winner of the Winter and Summer 2017 Excellence in Written Communication Award…

Winner of the CCOM Writing Recognition Award

Christian Barker is the winner of the Communication in Engineering-Writing Recognition Award for the 2016 Winter and Summer semesters. The award comes with a $500 prize from the Faculty of Engineering.

Title: The Feasibility of Fibre Reinforced Polymers as an Alternative to Steel in Reinforced Concrete

 

Abstract: The corrosiveness of steel compromises the structural integrity of reinforced concrete (RC) structures and costs the infrastructure industry billions of dollars every year. In response to this, engineers have developed fibre reinforced polymers (FRPs) – non-metallic composite materials of superior strength to be used in place of steel. The three most commonly used FRPs in construction are carbon, glass, and aramid. This paper discusses the feasibility of each FRP as an alternative to steel in RC structures by comparing their mechanical properties, sustainable merits, and costs. Research reveals that while glass FRP is most sustainable, its poor strength and durability render it unusable for most RC applications. Aramid FRP’s strength and durability fell short of carbon’s and it is most expensive. Carbon FRP demonstrates the highest strength, greatest durability, and lowest final costs making it the most feasible FRP to replace steel in RC. Recommendations for future implementation include establishing building codes, improving recyclability and lowering initial costs.

The full text of the paper can be downloaded from the record in eScolarship@McGill, McGill’s institutional repository.

Congratulations to Christian Barker on a well deserved award!

Thinking Outside the Brain

Innovation Week MCIN posterNext week is innovation week at McGill!

I want to bring your attention to an event that is geared towards undergraduate students of all backgrounds. The MCIN is hosting an interactive talk (with breakfast) highlighting the interdisciplinary nature of neuroscience research. 

It is happening at the Montreal Neurological Institute (de Grandpré Communications Centre), Thursday, November 17th, 9:30 a.m. to noon.

Registration is required so sign up today to reserve your spot.

We are entering a new era in our understanding of both healthy and pathological brain function, which underpins all human behaviour.  It is only through interdisciplinary convergence, pooling the expertise of individuals with extraordinarily varied backgrounds of study and experience, that we can continue to advance our understanding of the ultimate puzzle that is the mind.  In this event, we will present ways in which “thinking outside the brain” has proven beneficial to brain research within our centre, along with small-group workshops to foster collaborative learning and encourage synergies.