McGill Library supports engrXiv!

I am pleased to announce that McGill Library recently became a member of engrXiv, an open access e-print repository in engineering where faculty can submit their publications. This repository is not-for-profit and relies on university libraries and other organizations to cover their expenses. Please click here for a list of other institutions supporting this important work. You can search engrXiv for freely accessible research in many fields of engineering. Wondering how to pronounce the name? Me too! Founders say to call it “engineering archive”. You’ll find out more details about its name here.

Like McGill’s own institutional repository, eScholarship, engrXiv is a recognized repository that provides faculty with a venue for publishing their author-accepted manuscripts so that they can comply with the Tri-Agency Open Access Policy on Publications requiring all grant-funded journal articles be made open access within 12 months of publication. If you are a faculty member or other researcher wishing to deposit to engrXiv, please go to: https://engrxiv.org/submit and follow the instructions. For more information about how engrXiv works, please click here.

engrXiv isn’t the only open access initiative that McGill Library supports. To learn about the others, please click here. Want to learn more about open access in general? Read all about it on the library’s pages or ask your librarian!

CAR T-Cell Therapy: A New Era in Cancer Treatments

A big thank you to Reese Ladak for submitting their MIMM 214 assignment to post on The Turret. This guest post may give you new hope about the future of cancer treatments!

______________________________________________________________

CAR T-Cell Therapy: A New Era in Cancer Treatments

Reese Ladak

“I’m sorry, the test came back positive. You have cancer.” – are words that no patient ever wishes to hear. Characterized by rapid and uncontrollable proliferation of cells, cancer research has the most funding–and with good reason, given how cancer death rates have decreased only 32% in males and 17% in females in 30 years (Close, 2015). Although conventional treatments like chemotherapy and radiation are effective, more than 35% of cancer patients in the US alone died in 2018 (Siegel, et al., 2018). Oncology treatments thus far have been not as effective as they are mentally, physically, and financially taxing on a person. This, however, will not be the case for much longer. Due to extensive research by scientists and biomedical engineers, a new branch of cancer treatment, CAR T-cell therapy, is on the rise (Maus, et al., 2014). In the near future, patients sitting in a doctor’s office will no longer skip a heartbeat when they hear the word “cancer.”

What is it?

As the name suggests, CAR T-cell therapy involves T cells, which are soldiers of the body that protect it from harm. Each T cell has a specific pathogen (or “enemy”) of the body that it targets and subsequently destroys. In CAR T-cell therapy, the pathogens are solely cancer cells, courtesy of the chimeric antigen receptor (CAR) (Pagel, 2017). The science behind CAR is simple: only cancerous cells carry the specific molecule which CAR has strong affinity for, and hence all the T cells carrying CAR will be targeted towards just cancerous cells (Guthrie, 2019). With that said, CAR inducing a higher degree of selectivity in T cells is the reason behind CAR T-cell therapy’s increased effectiveness compared to chemotherapy. The more conventional treatments, such as chemotherapy, are untargeted forms of treatment, meaning both cancerous and healthy cells are victims. Hence, the undesirable side effects of conventional cancer treatments, including hair loss, are no longer a concern for patients. Not only is it safer than chemotherapy, CAR T-cell therapy is much more convenient. With chemotherapy, patients must receive daily treatments. Contrastingly, patients undergoing CAR T-cell therapy require only one treatment, since CAR T cells autonomously fight the cancer to eradication (Tripathy, 2017).

Is it effective?

Based on a study done in 2016, where multiple CAR T-cell therapies were administered, it is! This study was trying to find the best way for CAR T-cell therapy to target cancerous cells, by evaluating different target molecules on cancerous cells that CAR may have high affinity towards. The study indicated that CAR T-cell therapy shows great potential. Based on the data based on more than 8,000 patients, it was apparent that blood cancers are much more treatable than solid tumours through CAR T-cell therapy. Furthermore, it was found that CD19 was the target molecule that was the most effective; a remarkable 80% of patients were completely cured of their cancer. The study also addressed a few flaws of CAR T-cell therapy, but, fortunately, they are quite manageable, and their severity is insignificant compared to that of cancer (Almåsbak, Aarvak, & Vemuri, 2016).

Should I care?

Yes, you definitely should – even if cancer is not a relevant part of your life. Cancer has been tormenting us for too long with requiring expensive, time-consuming and less than ideal treatments. Although current CAR T-cell treatments are far from perfect, such as being expensive and not 100% targeted towards cancerous cells, it is a major improvement from existing treatments–and it is only going to get better in the future. Current studies are trying to improve the selectivity of CAR T-cell therapy on blood cancers, as well as to introduce a way for the therapy to target solid tumours effectively (Sendra, 2018). Hence, a future where patients no longer have to worry about cancer is imminent.

References

  • Almåsbak, H., Aarvak, T., & Vemuri, M. C. (2016). CAR T Cell Therapy: A Game Changer in Cancer Treatment. Journal of Immunology Research,2016, 1-10. doi:10.1155/2016/5474602
  • Close, K. (2015, August 03). JAMA Paper Breaks Down Medical Research Funding in the US. Retrieved from https://diatribe.org/jama-paper-breaks-down-medical-research-funding-us
  • Guthrie, G. (2019, January 24). CAR T-Cell Immunotherapy: The 2018 Advance of the Year. Retrieved from https://www.cancer.net/blog/2018-01/car-t-cell-immunotherapy-2018-advance-year
  • Maus, M. V., Grupp, S. A., Porter, D. L., & June, C. H. (2014). Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood,123(17), 2625-2635. doi:10.1182/blood-2013-11-492231
  • Pagel, J. M. (2017, November 01). Chimeric Antigen Receptor (CAR) T-Cell Therapy. Retrieved from https://jamanetwork.com/journals/jamaoncology/fullarticle/2652907
  • Sendra, J. W. (2018, May 23). What You Need to Know About CAR T-Cell Therapy for Cancer. Retrieved from https://healthblog.uofmhealth.org/cancer-care/what-you-need-to-know-about-car-t-cell-therapy-for-cancer
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians,68(1), 7-30. doi:10.3322/caac.21442
  • Tripathy, D. (2017, March 19). Weighing the Benefits and Risks of CAR T-Cell Therapy: The Stakes Are High. Retrieved from https://www.curetoday.com/publications/cure/2017/hematology-1-2017/weighing-the-benefits-and-risks-of-car-tcell-therapy-the-stakes-are-high

 

An active Science Literacy Week

This year, Science Literacy Week will keep you moving. Beginning September 16, there are tours lined up, a game-based session around data management, a hands-on Excel workshop, interactive sound demonstrations, and exhibits to explore.

Here is the daily rundown of downtown activities organized by the Library:

Monday, (Sept 16): Montreal’s Urban Heat Island: Tour of temperature sensors on campus

Tuesday, (Sept 17): Tour of the Maude Abbott Medical Museum

Wednesday, (Sept 18): Sounds in the City + Treasures from the History of Science in Rare Books and Special Collections

Thursday, (Sept 19): Tour of the Steinberg Centre for Simulation and Interactive Learning + Discover the cure! An introduction to the fundamentals of data management

Friday, (Sept 20): Chart Making in Excel: Going Further by Telling a Story with your Data

Register for an event today!

We also have exhibits going on so don’t miss out on those. You will get the opportunity to test out your map literacy in the Redpath Library Building, and check out a science book in person or online.

Student recommendation for the NHL

Congratulations goes out to Mark Kumhyr, winner of the Winter/Summer 2018 Communication in Engineering (CCOM 206) Excellence in Written Communication Award!

Alternate Refrigeration Systems for Improving Ice Quality in NHL Arenas

The National Hockey League is a multibillion-dollar industry, and yet suffers from a recent uptick in complaints over sub-par ice quality, largely due to a warming climate and higher average ice rink temperatures. The objective of this paper is to demonstrate the superiority of an indirect ammonia/CO2 refrigeration system over a direct CO2 system, all in relation to the current indirect ammonia/brinewater system. The comparison will be made based on three criteria: efficiency, represented by the coefficient of performance value; cost, taking into account short- and long-term investments; and environmental effect, presented as a Global Warming Potential value. The results show that the indirect ammonia/CO2 system is 56% more efficient than the current system, and 20% more than the direct CO2 system, and is less costly in the long-term. The environmental effects of each refrigerant systems were shown to be negligible. It is recommended that the NHL implement an indirect ammonia/CO2 system in order to negate the warming arena temperatures, and ensure that the NHL remains a powerhouse in the sports industry.

Read the full paper in eScholarship, McGill’s open access repository.

Temporary closure of the Schulich Library

On May 15th, 2019 the Schulich Library closed for major renovation work. Schulich staff and collections have been relocated to the McLennan-Redpath Library Complex. Additional study spaces are being created in the McLennan-Redpath Complex including seating on the 2nd floor of Redpath and the 2nd floor of McLennan, as well as a number of new bookable group study rooms.

  • The Schulich Collection: 160,000 volumes have been moved to the basement of the Redpath Library Building and will be open to users in August 2019. Users can now request Schulich items for pickup at any branch location via the catalogue. Items not available for retrieval or pick up can be access through the InterLibrary Loan (ILL) Service.
  • Course Reserves: The Schulich reserve collection has moved to the main floor of McLennan Library Building in the HSSL Self-Serve Reserves Room for quick retrieval. The Self-Serve Reserves Room next to the Information Desk on the main floor of McLennan is open during regular borrowing service hours (i.e. when the service desk is open) and can be accessed by anyone during that time. Students, faculty, and staff wanting to access the room outside of regular borrowing service hours can be granted special access to the room. For more information, click here.
  • The Reference Collection and Standards: Schulich’s Reference Collection and Standards will be available in the reference area on the main floor of the McLennan Library Building.
  • Librarians: The Schulich Librarians are now based out of the 6th floor of the McLennan Library Building. We are still available to help you! You can get in touch by either emailing schulich.library@mcgill.ca or calling 514-398-4734. Library users are also welcome to visit in person.

When the construction work is completed in 2021, the Schulich Library will feature: more study and workspaces, improved accessibility, restored exterior masonry, a new HVAC system, and an expanded number of washrooms.

More information, including the timeline, scope and impact on users, is available here.

Dynamed Plus is Now Available

For all health sciences users and/or those who use Point of Care tools, we are delighted to announce that we have new access to Dynamed Plus.


Access it using this link!

Information on how to install the application on your mobile device can be found here!

A little bit about Dynamed Plus:

It’s a point of care, evidence-based, decision making tool. It is updated daily on a range of drugs, medical conditions, and calculators of many kinds.

The search functionality is improved over the old Dynamed, both in the general search bar, and within the monograph. It’s easy to read and find answers to clinical questions at a rapid pace.

Each article is edited by a team, using only current, high-quality evidence. To allow for maximum transparency, you can follow the step-by-step methodology that editors use here: http://www.dynamed.com/home/content/evidence-based-content/7-step-editorial-process

We recommend that all students, faculty, and staff, try out this awesome new tool!

Benefits and risks of Mars Colonization

A big thank you to Steve Lee and Anthony Johansen for submitting their Engineering Professional Practice (FACC 400) blog post to The Turret. This guest post will have you thinking about a future society on Mars.


Benefits and risks of Mars Colonization

Steve Lee
Anthony Johansen

Mars, also known as the Red Planet, have caught many scientists’ and engineers’ attention after rovers sent by NASA have found evidence of water on the planet in 2012. The discovery of water was very important since it indicated possibility of life on Mars, and further implies that the Earth is not the only planet where living being exists. Since then, many space agencies around the globe have sent their probes and rovers to collect more information about Mars. Recently, Mars became a popular topic again due to success of SpaceX, a private aerospace company which aims to reduce cost of space transportation and colonize Mars. Elon Musk, the CEO of SpaceX, believes colonizing Mars “i​s potentially something that could be accomplished in about 10 years, maybe sooner, maybe 9 years.” ​But despite all the efforts to make Mars colonization true, how can this benefits our society?

Establishing a colony on Mars would benefit our society in a number of ways. The first, and most notable way, is that a colony on Mars would mark the first interplanetary settlement in human history. This would be the most monumental achievement in our history to date and would likely be a point in history we would never forget. A settlement on Mars would also prove that such an endeavor is possible and pave the way for future colonizations of other planets and moons, inside our solar system as well as out.

Additionally, the world’s population growth have exponentially increased over the last centuries. United Nations projects that the world’s population will reach 9.8 billion in year 2050 and 11.2 billion in year 2100. At this fast growing rate, there is no doubt that the society will suffer due to limited resources available on Earth. However, colonization of Mars would leverage the problem by distributing the population of the Earth to Mars, and as well as improve the chances for mankind to survive in case the Earth is no longer sustainable.

Another important impact of a Mars colonization would be scientific research. As humans attempt to reach further and further into space, new and innovative advances in technology and science are required in order for us to reach these new heights. For example, since 1976 NASA has published a report every year called ​Spinoff which features new technologies based on research done by NASA. As of 2016, there are over 1,920 products in the ​Spinoff database which can be attributed to advances made by NASA researchers. A well known example is the Infrared Ear Thermometer, initially this technology was designed to measure the temperature of stars and planets across large distances, however it was eventually adapted to be used as a way to record human body temperature without direct contact with the body.

Unfortunately, as with any kind of undertaking of this magnitude, there exists risks. And while we do our best to plan for and minimize those risks, there is always a possibility of something going wrong. Some of the main risks in regard to the colonization itself lie in the environment of Mars. As Mars does not have a very substantial atmosphere, the mars colonists would need to be protected not only from the extreme weather and temperatures that can occur on Mars but also from the radiation that penetrates the atmosphere. Mars’ gravity is only 38 percent of that of the Earth and the difference affects greatly on human body. As a side effect, it causes weakness of bone and muscle, motion sickness, fluid redistribution and more.

Another element that creates risk is the human factor. Many engineers and scientists, try to make fault tolerant equipments, but sometimes a tiny little mistakes could result a great disaster. For example, on Jan 28, 1986, crews of the NASA’s space shuttle Challenger were killed during the launch due to failure of O-rings that seals the booster. It was mainly due to lack of experience launching the space shuttle in a specific environment, and lack of tests. Therefore, if the system designed for the Mars exploration have flaws, then it could lead to disasters.

Although there are risks associated to Mars colonization, there are many things that people can benefit from. As Neil Armstrong once said, the beginning of the mission will be “one small step for a man, one giant leap for mankind.”

References

Dunbar, Brian. “NASA Rover Finds Conditions Once Suited for Ancient Life on Mars.” ​NASA​, NASA, 19 Nov. 2015, ​www.nasa.gov/mission_pages/msl/news/msl20130312.html​.

Kelechava, Brad. “The Benefits of Colonizing Mars (Other Than Getting to Live There) – ANSI Blog.” ​The ANSI Blog,​ 4 Feb. 2019, www.blog.ansi.org/2016/10/the-benefits-of-colonizing-mars/​.

“World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100 | UN DESA Department of Economic and Social Affairs.” ​United Nations​, United Nations, www.un.org/development/desa/en/news/population/world-population-prospects-2017.html​.

Patel, Neel V. “SpaceX CEO Elon Musk Says His Company Could Have a Mars Colony by 2026.” ​Inverse​, www.inverse.com/article/21156-elon-musk-says-spacex-could-start-a-mars-colony-by-2026​.

Mars, Kelli. “The Human Body in Space.” ​NASA​, NASA, 30 Mar. 2016, www.nasa.gov/hrp/bodyinspace​.

Tate, Karl. “The Space Shuttle Challenger Disaster: What Happened? (Infographic).” ​Space.com​, Space Created with Sketch. Space, 28 Jan. 2016, www.space.com/31732-space-shuttle-challenger-disaster-explained-infographic.html​.


Steve Lee – U3 Computer Engineering student
Anthony Johansen – U2 Software Engineering student

This past week the University of California didn’t renew its contract with one of the biggest publishers of research articles in the world

McGill Library’s Scholarly Communications Librarian, Jessica Lange, explains…

 

Why?

University of California was negotiating for two things:

  1. Access to Elsevier content
  2. The right for University of California researchers who publish with Elsevier, to make their work open access immediately.

What happened?

According to U C, Elsevier wanted to charge UC authors “large publishing fees on top of the university’s multi-million dollar subscription, resulting in much greater cost to the university and much higher profits for Elsevier. Additional terms that broke off negotiations can be found here.

But don’t big publishing companies always charge fees for authors to make their work open access?

Yes they do – via APCs (or article processing charges) either for fully open access journals or via hybrid journals (i.e. content in the journal is closed unless an author elects to pay an APC).

However these fees are typically paid by authors individually rather than through a bundled deal at an institutional level.

The APCs at Elsevier vary but generally, the range is $1100- 4000 USD per article

What was UC trying to do?

It wanted to follow the model of “big deals” or “publish and read” deals that are occurring in Europe. In such deals you try to bundle the costs of such APCs charges alongside your regular subscription price – ideally, because you’re negotiating the two separate costs together, it should result in savings across the university as a whole.

This also takes a more holistic approach to the publishing life cycle rather than separating author costs from reader costs.

Why didn’t Elsevier go for it?

Well they *did* except the price they wanted UC to pay was too high. I can only speculate as to what price they wanted UC to pay but from reading UC commentary, it looked like Elsevier expected UC to pay an APC (in full) each time a UC author published with them. As you can imagine, this pricing approach wouldn’t have resulted in any savings for the university and may in fact have resulted in more costs.

What happens now?

UC has perpetual access rights to Elsevier journals prior to January 2019. For newly published articles, UC will locate the materials through interlibrary loan or locating through another means of scholarly sharing (e.g. checking to see if the article was made openly available via a repository).

Is anyone in Canada negotiating a big deal? 

Not that I’m aware of but to some extent CRKN negotiations have strived for something similar. Many of McGill’s current APC discounts are the results of CRKN negotiations which bundle the two (i.e. discounts on author fees plus subscription prices).

Browse our “Quickies” display

Just in time for valentines day, or the rest of the month really, we have a new book display for you to browse! Every book is either a collection of short stories, poetry, essays, images, and other dip-in-and-out titles. Grab one to take home, or just read part of one as a study break, and drop it back on the cart on your way out.

We also have a list of e-books that you may wish to check out, if paper books aren’t your thing.

The Ethics of Colonization on Mars

Image from Wikipedia

Welcome back to Aleiah who posted for the Turret while she was a student in Communication in Engineering (CCOM 206). Here is a post she wrote with her fellow student, Kevin Xie, for a class assignment for Engineering Professional Practice (FACC 400).


The Ethics of Colonization on Mars

Humanity is on the verge of technological advancement which will make possible the colonization of Mars, the red planet. According to SpaceX the first human is planned to land on Mars by the year 20241. However, this calls into question: Should humanity colonize Mars?

The colonization of Mars is a complex issue with many underlying aspects. There are also many technical challenges such as, overcoming cosmic radiation, bone demineralization and the psychological stress of a journey to Mars.  For Mars to be habitable by humans, it must first be terraformed. Terraforming is a process in which the environment of a planet is modified to emulate the earth. It involves the modification of the atmosphere, topography, temperature and ecology. Doing this will help scientists on Earth understand Earth’s own environment as well as facilitate human life on mars. Any technological advancements made will help all of humanity. An example of this is climate change on Earth. Understanding how to control the temperature of a planet can help solve climate change on Earth.

Whether or not the Mars colonization project is a success, humanity can benefit from this project as the technology required to successfully colonize Mars can be useful on Earth as well. For example, here are three industries that would be greatly advanced thanks to the Mars project, to the benefit of humans on Earth:

  1. Agriculture:

The World Bank reported in 20152 that approximately 11% of Earth is arable, meaning capable of being ploughed and used for crops. As human population grows and food security becomes a greater issue, the agricultural industry would benefit from technology that allowed them to farm on unforgiving land. The Mars project faces this exact design problem as humans would need to start growing their own food on Mars in order to successfully colonize there.

  1. Medical:

Astronauts face a number of health issues in space, such as loss of bone density and muscular atrophy due to the lower gravity. In particular, Mars only has 38% of Earth’s gravity. Under prolonged circumstances, astronauts could find themselves facing skeletal damage. Although the circumstances are unique to the astronauts, these health concerns are not. Osteoporosis is a common public health problem whose patients tend to neglect their medication as they don’t believe in the effectiveness of the treatment. Solving this problem for astronauts will also help these patients.

  1. Nuclear Power:

Mars offers very little radiation protection and shielding compared to Earth, due to having no magnetosphere and a very thin atmosphere. Whereas humans on Earth are naturally protected from solar radiation and galactic cosmic rays, as Earth explores more sources of energy including nuclear power, it will soon become increasingly important to create technology that would protect humans from radiation.

Additionally, it is important to think of the colonization of Mars not as a transfer, but an expansion. Creating a colony on Mars does not mean that the earth will be abandoned. It can be compared to the first European settlers arriving in America. America was simply an expansion. In order for humanity to continue to progress, Mars must be colonized.

The colonization of Mars is also a stepping stone for humans to move beyond the solar system. The knowledge gained from colonizing mars will not only pave the way to going to other planets, but also building permanently habitable space stations in which humans can live.

Citations

Arable land (% of land area). (n.d.). Retrieved November 09, 2018, from https://data.worldbank.org/indicator/AG.LND.ARBL.ZS?end=2015&start=2015&view=bar

This is how SpaceX will get humans to Mars by 2024 | CBC News. (2017, September 29). Retrieved November 09, 2018, from https://www.cbc.ca/news/technology/spacex-mars-rocket-elon-musk-1.4312878